
Chapter 5

Hash Tables

Hash tables are an efficient method of storing a small number, n, of inte-
gers from a large range U = {0, . . . ,2w − 1}. The term hash table includes a
broad range of data structures. This chapter focuses on one of the most
common implementations of hash tables, namely hashing with chaining.

Very often hash tables store types of data that are not integers. In this
case, an integer hash code is associated with each data item and is used in
the hash table. The second part of this chapter discusses how such hash
codes are generated.

Some of the methods used in this chapter require random choices of
integers in some specific range. In the code samples, some of these “ran-
dom” integers are hard-coded constants. These constants were obtained
using random bits generated from atmospheric noise.

5.1 ChainedHashTable: Hashing with Chaining

A ChainedHashTable data structure uses hashing with chaining to store
data as an array, t, of lists. An integer, n, keeps track of the total number
of items in all lists (see Figure 5.1):

ChainedHashTable
List<T>[] t;
int n;

The hash value of a data item x, denoted hash(x) is a value in the range

107

§5.1 Hash Tables

b d

c

i x h j

g

a

f m

e

` k

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15t

Figure 5.1: An example of a ChainedHashTable with n = 14 and t.length = 16.
In this example hash(x) = 6

{0, . . . ,t.length − 1}. All items with hash value i are stored in the list at
t[i]. To ensure that lists don’t get too long, we maintain the invariant

n ≤ t.length

so that the average number of elements stored in one of these lists is
n/t.length ≤ 1.

To add an element, x, to the hash table, we first check if the length of
t needs to be increased and, if so, we grow t. With this out of the way
we hash x to get an integer, i, in the range {0, . . . ,t.length − 1}, and we
append x to the list t[i]:

ChainedHashTable
boolean add(T x) {

if (find(x) != null) return false;
if (n+1 > t.length) resize();
t[hash(x)].add(x);
n++;
return true;

}

Growing the table, if necessary, involves doubling the length of t and
reinserting all elements into the new table. This strategy is exactly the
same as the one used in the implementation of ArrayStack and the same
result applies: The cost of growing is only constant when amortized over
a sequence of insertions (see Lemma 2.1 on page 33).

Besides growing, the only other work done when adding a new value
x to a ChainedHashTable involves appending x to the list t[hash(x)]. For

108

ChainedHashTable: Hashing with Chaining §5.1

any of the list implementations described in Chapters 2 or 3, this takes
only constant time.

To remove an element, x, from the hash table, we iterate over the list
t[hash(x)] until we find x so that we can remove it:

ChainedHashTable
T remove(T x) {

Iterator<T> it = t[hash(x)].iterator();
while (it.hasNext()) {

T y = it.next();
if (y.equals(x)) {
it.remove();
n--;
return y;

}
}
return null;

}

This takes O(nhash(x)) time, where ni denotes the length of the list
stored at t[i].

Searching for the element x in a hash table is similar. We perform a
linear search on the list t[hash(x)]:

ChainedHashTable
T find(Object x) {

for (T y : t[hash(x)])
if (y.equals(x))
return y;

return null;
}

Again, this takes time proportional to the length of the list t[hash(x)].
The performance of a hash table depends critically on the choice of

the hash function. A good hash function will spread the elements evenly
among the t.length lists, so that the expected size of the list t[hash(x)] is
O(n/t.length) = O(1). On the other hand, a bad hash function will hash
all values (including x) to the same table location, in which case the size

109

§5.1 Hash Tables

of the list t[hash(x)] will be n. In the next section we describe a good hash
function.

5.1.1 Multiplicative Hashing

Multiplicative hashing is an efficient method of generating hash values
based on modular arithmetic (discussed in Section 2.3) and integer divi-
sion. It uses the div operator, which calculates the integral part of a quo-
tient, while discarding the remainder. Formally, for any integers a ≥ 0
and b ≥ 1, adivb = ba/bc.

In multiplicative hashing, we use a hash table of size 2d for some in-
teger d (called the dimension). The formula for hashing an integer x ∈
{0, . . . ,2w − 1} is

hash(x) = ((z · x) mod 2w)div2w−d .

Here, z is a randomly chosen odd integer in {1, . . . ,2w −1}. This hash func-
tion can be realized very efficiently by observing that, by default, opera-
tions on integers are already done modulo 2w where w is the number of
bits in an integer. (See Figure 5.2.) Furthermore, integer division by 2w−d

is equivalent to dropping the rightmost w− d bits in a binary representa-
tion (which is implemented by shifting the bits right by w−d). In this way,
the code that implements the above formula is simpler than the formula
itself:

ChainedHashTable
int hash(Object x) {

return (z * x.hashCode()) >>> (w-d);
}

The following lemma, whose proof is deferred until later in this sec-
tion, shows that multiplicative hashing does a good job of avoiding colli-
sions:

Lemma 5.1. Let x and y be any two values in {0, . . . ,2w − 1} with x , y. Then
Pr{hash(x) = hash(y)} ≤ 2/2d.

With Lemma 5.1, the performance of remove(x), and find(x) are easy
to analyze:

110

ChainedHashTable: Hashing with Chaining §5.1

2w (4294967296) 100000000000000000000000000000000
z (4102541685) 11110100100001111101000101110101
x (42) 00000000000000000000000000101010
z · x 10100000011110010010000101110100110010
(z · x) mod 2w 00011110010010000101110100110010
((z · x) mod 2w)div2w−d 00011110

Figure 5.2: The operation of the multiplicative hash function with w = 32 and
d = 8.

Lemma 5.2. For any data value x, the expected length of the list t[hash(x)]
is at most nx + 2, where nx is the number of occurrences of x in the hash table.

Proof. Let S be the (multi-)set of elements stored in the hash table that
are not equal to x. For an element y ∈ S, define the indicator variable

Iy =
{

1 if hash(x) = hash(y)
0 otherwise

and notice that, by Lemma 5.1, E[Iy] ≤ 2/2d = 2/t.length. The expected
length of the list t[hash(x)] is given by

E[t[hash(x)].size()] = E

nx +

∑

y∈S
Iy

= nx +
∑

y∈S
E[Iy]

≤ nx +
∑

y∈S
2/t.length

≤ nx +
∑

y∈S
2/n

≤ nx + (n− nx)2/n

≤ nx + 2 ,

as required.

Now, we want to prove Lemma 5.1, but first we need a result from
number theory. In the following proof, we use the notation (br , . . . , b0)2

to denote
∑r
i=0 bi2

i , where each bi is a bit, either 0 or 1. In other words,

111

§5.1 Hash Tables

(br , . . . , b0)2 is the integer whose binary representation is given by br , . . . , b0.
We use ? to denote a bit of unknown value.

Lemma 5.3. Let S be the set of odd integers in {1, . . . ,2w − 1}; let q and i
be any two elements in S. Then there is exactly one value z ∈ S such that
zq mod 2w = i.

Proof. Since the number of choices for z and i is the same, it is sufficient
to prove that there is at most one value z ∈ S that satisfies zq mod 2w = i.

Suppose, for the sake of contradiction, that there are two such values
z and z′ , with z > z′ . Then

zq mod 2w = z′q mod 2w = i

So
(z− z′)q mod 2w = 0

But this means that
(z− z′)q = k2w (5.1)

for some integer k. Thinking in terms of binary numbers, we have

(z− z′)q = k · (1,0, . . . ,0︸ ︷︷ ︸
w

)2 ,

so that the w trailing bits in the binary representation of (z − z′)q are all
0’s.

Furthermore k , 0, since q , 0 and z− z′ , 0. Since q is odd, it has no
trailing 0’s in its binary representation:

q = (?, . . . ,?,1)2 .

Since |z − z′ | < 2w, z − z′ has fewer than w trailing 0’s in its binary repre-
sentation:

z− z′ = (?, . . . ,?,1,0, . . . ,0︸ ︷︷ ︸
<w

)2 .

Therefore, the product (z− z′)q has fewer than w trailing 0’s in its binary
representation:

(z− z′)q = (?, · · · ,?,1,0, . . . ,0︸ ︷︷ ︸
<w

)2 .

112

ChainedHashTable: Hashing with Chaining §5.1

Therefore (z− z′)q cannot satisfy (5.1), yielding a contradiction and com-
pleting the proof.

The utility of Lemma 5.3 comes from the following observation: If z is
chosen uniformly at random from S, then zt is uniformly distributed over
S. In the following proof, it helps to think of the binary representation of
z, which consists of w− 1 random bits followed by a 1.

Proof of Lemma 5.1. First we note that the condition hash(x) = hash(y) is
equivalent to the statement “the highest-order d bits of zx mod 2w and the
highest-order d bits of zy mod 2w are the same.” A necessary condition of
that statement is that the highest-order d bits in the binary representation
of z(x− y) mod 2w are either all 0’s or all 1’s. That is,

z(x− y) mod 2w = (0, . . . ,0︸ ︷︷ ︸
d

,?, . . . ,?︸ ︷︷ ︸
w−d

)2 (5.2)

when zx mod 2w > zy mod 2w or

z(x− y) mod 2w = (1, . . . ,1︸ ︷︷ ︸
d

,?, . . . ,?︸ ︷︷ ︸
w−d

)2 . (5.3)

when zx mod 2w < zy mod 2w. Therefore, we only have to bound the
probability that z(x− y) mod 2w looks like (5.2) or (5.3).

Let q be the unique odd integer such that (x−y) mod 2w = q2r for some
integer r ≥ 0. By Lemma 5.3, the binary representation of zq mod 2w has
w− 1 random bits, followed by a 1:

zq mod 2w = (bw−1, . . . , b1︸ ︷︷ ︸
w−1

,1)2

Therefore, the binary representation of z(x−y) mod 2w = zq2r mod 2w has
w− r − 1 random bits, followed by a 1, followed by r 0’s:

z(x− y) mod 2w = zq2r mod 2w = (bw−r−1, . . . , b1︸ ︷︷ ︸
w−r−1

,1,0,0, . . . ,0︸ ︷︷ ︸
r

)2

We can now finish the proof: If r > w − d, then the d higher order bits
of z(x − y) mod 2w contain both 0’s and 1’s, so the probability that z(x −

113

§5.2 Hash Tables

y) mod 2w looks like (5.2) or (5.3) is 0. If r = w − d, then the probabil-
ity of looking like (5.2) is 0, but the probability of looking like (5.3) is
1/2d−1 = 2/2d (since we must have b1, . . . , bd−1 = 1, . . . ,1). If r < w− d, then
we must have bw−r−1, . . . ,bw−r−d = 0, . . . ,0 or bw−r−1, . . . , bw−r−d = 1, . . . ,1. The
probability of each of these cases is 1/2d and they are mutually exclu-
sive, so the probability of either of these cases is 2/2d. This completes the
proof.

5.1.2 Summary

The following theorem summarizes the performance of a ChainedHash-
Table data structure:

Theorem 5.1. A ChainedHashTable implements the USet interface. Ignor-
ing the cost of calls to grow(), a ChainedHashTable supports the operations
add(x), remove(x), and find(x) in O(1) expected time per operation.

Furthermore, beginning with an empty ChainedHashTable, any sequence
of m add(x) and remove(x) operations results in a total of O(m) time spent
during all calls to grow().

5.2 LinearHashTable: Linear Probing

The ChainedHashTable data structure uses an array of lists, where the
ith list stores all elements x such that hash(x) = i. An alternative, called
open addressing is to store the elements directly in an array, t, with each
array location in t storing at most one value. This approach is taken by
the LinearHashTable described in this section. In some places, this data
structure is described as open addressing with linear probing.

The main idea behind a LinearHashTable is that we would, ideally,
like to store the element x with hash value i = hash(x) in the table loca-
tion t[i]. If we cannot do this (because some element is already stored
there) then we try to store it at location t[(i+ 1) mod t.length]; if that’s
not possible, then we try t[(i+2) mod t.length], and so on, until we find
a place for x.

There are three types of entries stored in t:

114

LinearHashTable: Linear Probing §5.2

1. data values: actual values in the USet that we are representing;

2. null values: at array locations where no data has ever been stored;
and

3. del values: at array locations where data was once stored but that
has since been deleted.

In addition to the counter, n, that keeps track of the number of elements
in the LinearHashTable, a counter, q, keeps track of the number of ele-
ments of Types 1 and 3. That is, q is equal to n plus the number of del
values in t. To make this work efficiently, we need t to be considerably
larger than q, so that there are lots of null values in t. The operations on
a LinearHashTable therefore maintain the invariant that t.length ≥ 2q.

To summarize, a LinearHashTable contains an array, t, that stores
data elements, and integers n and q that keep track of the number of
data elements and non-null values of t, respectively. Because many hash
functions only work for table sizes that are a power of 2, we also keep an
integer d and maintain the invariant that t.length = 2d.

LinearHashTable
T[] t; // the table
int n; // the size
int d; // t.length = 2ˆd
int q; // number of non-null entries in t

The find(x) operation in a LinearHashTable is simple. We start at
array entry t[i] where i = hash(x) and search entries t[i], t[(i + 1) mod
t.length], t[(i + 2) mod t.length], and so on, until we find an index i′

such that, either, t[i′] = x, or t[i′] = null. In the former case we return
t[i′]. In the latter case, we conclude that x is not contained in the hash
table and return null.

LinearHashTable
T find(T x) {

int i = hash(x);
while (t[i] != null) {

if (t[i] != del && x.equals(t[i])) return t[i];
i = (i == t.length-1) ? 0 : i + 1; // increment i

115

§5.2 Hash Tables

}
return null;

}

The add(x) operation is also fairly easy to implement. After checking
that x is not already stored in the table (using find(x)), we search t[i],
t[(i+1) mod t.length], t[(i+2) mod t.length], and so on, until we find a
null or del and store x at that location, increment n, and q, if appropriate.

LinearHashTable
boolean add(T x) {

if (find(x) != null) return false;
if (2*(q+1) > t.length) resize(); // max 50% occupancy
int i = hash(x);
while (t[i] != null && t[i] != del)

i = (i == t.length-1) ? 0 : i + 1; // increment i
if (t[i] == null) q++;
n++;
t[i] = x;
return true;

}

By now, the implementation of the remove(x) operation should be ob-
vious. We search t[i], t[(i + 1) mod t.length], t[(i + 2) mod t.length],
and so on until we find an index i′ such that t[i′] = x or t[i′] = null.
In the former case, we set t[i′] = del and return true. In the latter case
we conclude that x was not stored in the table (and therefore cannot be
deleted) and return false.

LinearHashTable
T remove(T x) {

int i = hash(x);
while (t[i] != null) {

T y = t[i];
if (y != del && x.equals(y)) {
t[i] = del;
n--;
if (8*n < t.length) resize(); // min 12.5% occupancy
return y;

116

LinearHashTable: Linear Probing §5.2

}
i = (i == t.length-1) ? 0 : i + 1; // increment i

}
return null;

}

The correctness of the find(x), add(x), and remove(x) methods is easy
to verify, though it relies on the use of del values. Notice that none of
these operations ever sets a non-null entry to null. Therefore, when we
reach an index i′ such that t[i′] = null, this is a proof that the element, x,
that we are searching for is not stored in the table; t[i′] has always been
null, so there is no reason that a previous add(x) operation would have
proceeded beyond index i′ .

The resize() method is called by add(x) when the number of non-
null entries exceeds t.length/2 or by remove(x) when the number of
data entries is less than t.length/8. The resize() method works like the
resize() methods in other array-based data structures. We find the small-
est non-negative integer d such that 2d ≥ 3n. We reallocate the array t so
that it has size 2d, and then we insert all the elements in the old version
of t into the newly-resized copy of t. While doing this, we reset q equal
to n since the newly-allocated t contains no del values.

LinearHashTable
void resize() {

d = 1;
while ((1<<d) < 3*n) d++;
T[] told = t;
t = newArray(1<<d);
q = n;
// insert everything from told
for (int k = 0; k < told.length; k++) {

if (told[k] != null && told[k] != del) {
int i = hash(told[k]);
while (t[i] != null)

i = (i == t.length-1) ? 0 : i + 1;
t[i] = told[k];

}
}

117

§5.2 Hash Tables

}

5.2.1 Analysis of Linear Probing

Notice that each operation, add(x), remove(x), or find(x), finishes as soon
as (or before) it discovers the first null entry in t. The intuition behind
the analysis of linear probing is that, since at least half the elements in t
are equal to null, an operation should not take long to complete because
it will very quickly come across a null entry. We shouldn’t rely too heav-
ily on this intuition, though, because it would lead us to (the incorrect)
conclusion that the expected number of locations in t examined by an
operation is at most 2.

For the rest of this section, we will assume that all hash values are
independently and uniformly distributed in {0, . . . ,t.length − 1}. This is
not a realistic assumption, but it will make it possible for us to analyze
linear probing. Later in this section we will describe a method, called
tabulation hashing, that produces a hash function that is “good enough”
for linear probing. We will also assume that all indices into the positions
of t are taken modulo t.length, so that t[i] is really a shorthand for
t[i mod t.length].

We say that a run of length k that starts at i occurs when all the table en-
tries t[i],t[i+ 1], . . . ,t[i+k−1] are non-null and t[i−1] = t[i+k] = null.
The number of non-null elements of t is exactly q and the add(x) method
ensures that, at all times, q ≤ t.length/2. There are q elements x1, . . . ,xq
that have been inserted into t since the last rebuild() operation. By our
assumption, each of these has a hash value, hash(xj), that is uniform and
independent of the rest. With this setup, we can prove the main lemma
required to analyze linear probing.

Lemma 5.4. Fix a value i ∈ {0, . . . ,t.length−1}. Then the probability that a
run of length k starts at i is O(ck) for some constant 0 < c < 1.

Proof. If a run of length k starts at i, then there are exactly k elements xj
such that hash(xj) ∈ {i, . . . ,i + k − 1}. The probability that this occurs is
exactly

pk =
(
q
k

)(
k

t.length

)k (t.length− k
t.length

)q−k
,

118

LinearHashTable: Linear Probing §5.2

since, for each choice of k elements, these k elements must hash to one of
the k locations and the remaining q − k elements must hash to the other
t.length− k table locations.1

In the following derivation we will cheat a little and replace r! with
(r/e)r . Stirling’s Approximation (Section 1.3.2) shows that this is only a
factor of O(

√
r) from the truth. This is just done to make the derivation

simpler; Exercise 5.4 asks the reader to redo the calculation more rigor-
ously using Stirling’s Approximation in its entirety.

The value of pk is maximized when t.length is minimum, and the
data structure maintains the invariant that t.length ≥ 2q, so

pk ≤
(
q
k

)(
k

2q

)k (2q− k
2q

)q−k

=
(

q!
(q− k)!k!

)(
k

2q

)k (2q− k
2q

)q−k

≈
(

qq

(q− k)q−kkk

)(
k

2q

)k (2q− k
2q

)q−k
[Stirling’s approximation]

=
(

qkqq−k

(q− k)q−kkk

)(
k

2q

)k (2q− k
2q

)q−k

=
(
qk

2qk

)k (q(2q− k)
2q(q− k)

)q−k

=
(1

2

)k ((2q− k)
2(q− k)

)q−k

=
(1

2

)k (
1 +

k
2(q− k)

)q−k

≤
(√
e

2

)k
.

(In the last step, we use the inequality (1 + 1/x)x ≤ e, which holds for all
x > 0.) Since

√
e/2 < 0.824360636 < 1, this completes the proof.

Using Lemma 5.4 to prove upper-bounds on the expected running
time of find(x), add(x), and remove(x) is now fairly straightforward. Con-
sider the simplest case, where we execute find(x) for some value x that

1Note that pk is greater than the probability that a run of length k starts at i, since the
definition of pk does not include the requirement t[i− 1] = t[i+ k] = null.

119

§5.2 Hash Tables

has never been stored in the LinearHashTable. In this case, i = hash(x)
is a random value in {0, . . . ,t.length − 1} independent of the contents of
t. If i is part of a run of length k, then the time it takes to execute the
find(x) operation is at most O(1 + k). Thus, the expected running time
can be upper-bounded by

O

1 +

(1
t.length

)t.length∑

i=1

∞∑

k=0

kPr{i is part of a run of length k}

 .

Note that each run of length k contributes to the inner sum k times for a
total contribution of k2, so the above sum can be rewritten as

O

1 +

(1
t.length

)t.length∑

i=1

∞∑

k=0

k2 Pr{i starts a run of length k}

≤O

1 +

(1
t.length

)t.length∑

i=1

∞∑

k=0

k2pk

=O

1 +

∞∑

k=0

k2pk

=O

1 +

∞∑

k=0

k2 ·O(ck)

=O(1) .

The last step in this derivation comes from the fact that
∑∞
k=0 k

2 ·O(ck)
is an exponentially decreasing series.2 Therefore, we conclude that the
expected running time of the find(x) operation for a value x that is not
contained in a LinearHashTable is O(1).

If we ignore the cost of the resize() operation, then the above analysis
gives us all we need to analyze the cost of operations on a LinearHash-
Table.

First of all, the analysis of find(x) given above applies to the add(x)
operation when x is not contained in the table. To analyze the find(x)
operation when x is contained in the table, we need only note that this

2In the terminology of many calculus texts, this sum passes the ratio test: There exists a

positive integer k0 such that, for all k ≥ k0, (k+1)2ck+1

k2ck
< 1.

120

LinearHashTable: Linear Probing §5.2

is the same as the cost of the add(x) operation that previously added x to
the table. Finally, the cost of a remove(x) operation is the same as the cost
of a find(x) operation.

In summary, if we ignore the cost of calls to resize(), all operations on
a LinearHashTable run inO(1) expected time. Accounting for the cost of
resize can be done using the same type of amortized analysis performed
for the ArrayStack data structure in Section 2.1.

5.2.2 Summary

The following theorem summarizes the performance of the LinearHash-
Table data structure:

Theorem 5.2. A LinearHashTable implements the USet interface. Ignor-
ing the cost of calls to resize(), a LinearHashTable supports the operations
add(x), remove(x), and find(x) in O(1) expected time per operation.

Furthermore, beginning with an empty LinearHashTable, any sequence
of m add(x) and remove(x) operations results in a total of O(m) time spent
during all calls to resize().

5.2.3 Tabulation Hashing

While analyzing the LinearHashTable structure, we made a very strong
assumption: That for any set of elements, {x1, . . . ,xn}, the hash values
hash(x1), . . . ,hash(xn) are independently and uniformly distributed over
the set {0, . . . ,t.length − 1}. One way to achieve this is to store a giant
array, tab, of length 2w, where each entry is a random w-bit integer, inde-
pendent of all the other entries. In this way, we could implement hash(x)
by extracting a d-bit integer from tab[x.hashCode()]:

LinearHashTable
int idealHash(T x) {

return tab[x.hashCode() >>> w-d];
}

Unfortunately, storing an array of size 2w is prohibitive in terms of
memory usage. The approach used by tabulation hashing is to, instead,

121

§5.3 Hash Tables

treat w-bit integers as being comprised of w/r integers, each having only r
bits. In this way, tabulation hashing only needs w/r arrays each of length
2r. All the entries in these arrays are independent w-bit integers. To ob-
tain the value of hash(x) we split x.hashCode() up into w/r r-bit integers
and use these as indices into these arrays. We then combine all these
values with the bitwise exclusive-or operator to obtain hash(x). The fol-
lowing code shows how this works when w = 32 and r = 4:

LinearHashTable
int hash(T x) {

int h = x.hashCode();
return (tab[0][h&0xff]

ˆ tab[1][(h>>>8)&0xff]
ˆ tab[2][(h>>>16)&0xff]
ˆ tab[3][(h>>>24)&0xff])
>>> (w-d);

}

In this case, tab is a two-dimensional array with four columns and
232/4 = 256 rows.

One can easily verify that, for any x, hash(x) is uniformly distributed
over {0, . . . ,2d − 1}. With a little work, one can even verify that any pair
of values have independent hash values. This implies tabulation hashing
could be used in place of multiplicative hashing for the ChainedHash-
Table implementation.

However, it is not true that any set of n distinct values gives a set of n
independent hash values. Nevertheless, when tabulation hashing is used,
the bound of Theorem 5.2 still holds. References for this are provided at
the end of this chapter.

5.3 Hash Codes

The hash tables discussed in the previous section are used to associate
data with integer keys consisting of w bits. In many cases, we have keys
that are not integers. They may be strings, objects, arrays, or other com-
pound structures. To use hash tables for these types of data, we must

122

Hash Codes §5.3

map these data types to w-bit hash codes. Hash code mappings should
have the following properties:

1. If x and y are equal, then x.hashCode() and y.hashCode() are equal.

2. If x and y are not equal, then the probability that x.hashCode() =
y.hashCode() should be small (close to 1/2w).

The first property ensures that if we store x in a hash table and later
look up a value y equal to x, then we will find x—as we should. The sec-
ond property minimizes the loss from converting our objects to integers.
It ensures that unequal objects usually have different hash codes and so
are likely to be stored at different locations in our hash table.

5.3.1 Hash Codes for Primitive Data Types

Small primitive data types like char, byte, int, and float are usually
easy to find hash codes for. These data types always have a binary rep-
resentation and this binary representation usually consists of w or fewer
bits. (For example, in Java, byte is an 8-bit type and float is a 32-bit
type.) In these cases, we just treat these bits as the representation of an
integer in the range {0, . . . ,2w − 1}. If two values are different, they get
different hash codes. If they are the same, they get the same hash code.

A few primitive data types are made up of more than w bits, usually
cw bits for some constant integer c. (Java’s long and double types are
examples of this with c = 2.) These data types can be treated as compound
objects made of c parts, as described in the next section.

5.3.2 Hash Codes for Compound Objects

For a compound object, we want to create a hash code by combining the
individual hash codes of the object’s constituent parts. This is not as easy
as it sounds. Although one can find many hacks for this (for example,
combining the hash codes with bitwise exclusive-or operations), many of
these hacks turn out to be easy to foil (see Exercises 5.7–5.9). However,
if one is willing to do arithmetic with 2w bits of precision, then there are
simple and robust methods available. Suppose we have an object made

123

§5.3 Hash Tables

up of several parts P0, . . . , Pr−1 whose hash codes are x0, . . . ,xr−1. Then we
can choose mutually independent random w-bit integers z0, . . . ,zr−1 and a
random 2w-bit odd integer z and compute a hash code for our object with

h(x0, . . . ,xr−1) =

z

r−1∑

i=0

zixi

 mod 22w

div2w .

Note that this hash code has a final step (multiplying by z and dividing by
2w) that uses the multiplicative hash function from Section 5.1.1 to take
the 2w-bit intermediate result and reduce it to a w-bit final result. Here
is an example of this method applied to a simple compound object with
three parts x0, x1, and x2:

Point3D
int hashCode() {

// random numbers from rand.org
long[] z = {0x2058cc50L, 0xcb19137eL, 0x2cb6b6fdL};
long zz = 0xbea0107e5067d19dL;

// convert (unsigned) hashcodes to long
long h0 = x0.hashCode() & ((1L<<32)-1);
long h1 = x1.hashCode() & ((1L<<32)-1);
long h2 = x2.hashCode() & ((1L<<32)-1);

return (int)(((z[0]*h0 + z[1]*h1 + z[2]*h2)*zz)
>>> 32);

}

The following theorem shows that, in addition to being straightfor-
ward to implement, this method is provably good:

Theorem 5.3. Let x0, . . . ,xr−1 and y0, . . . ,yr−1 each be sequences of w bit inte-
gers in {0, . . . ,2w −1} and assume xi , yi for at least one index i ∈ {0, . . . , r −1}.
Then

Pr{h(x0, . . . ,xr−1) = h(y0, . . . ,yr−1)} ≤ 3/2w .

Proof. We will first ignore the final multiplicative hashing step and see
how that step contributes later. Define:

h′(x0, . . . ,xr−1) =

r−1∑

j=0

zjxj

 mod 22w .

124

Hash Codes §5.3

Suppose that h′(x0, . . . ,xr−1) = h′(y0, . . . ,yr−1). We can rewrite this as:

zi(xi − yi) mod 22w = t (5.4)

where

t =

i−1∑

j=0

zj (yj − xj) +
r−1∑

j=i+1

zj (yj − xj)

 mod 22w

If we assume, without loss of generality that xi > yi , then (5.4) becomes

zi(xi − yi) = t , (5.5)

since each of zi and (xi − yi) is at most 2w − 1, so their product is at
most 22w − 2w+1 + 1 < 22w − 1. By assumption, xi − yi , 0, so (5.5) has
at most one solution in zi . Therefore, since zi and t are independent
(z0, . . . ,zr−1 are mutually independent), the probability that we select zi
so that h′(x0, . . . ,xr−1) = h′(y0, . . . ,yr−1) is at most 1/2w.

The final step of the hash function is to apply multiplicative hashing
to reduce our 2w-bit intermediate result h′(x0, . . . ,xr−1) to a w-bit final re-
sult h(x0, . . . ,xr−1). By Theorem 5.3, if h′(x0, . . . ,xr−1) , h′(y0, . . . ,yr−1), then
Pr{h(x0, . . . ,xr−1) = h(y0, . . . ,yr−1)} ≤ 2/2w.

To summarize,

Pr
{
h(x0, . . . ,xr−1)

= h(y0, . . . ,yr−1)

}

= Pr

h′(x0, . . . ,xr−1) = h′(y0, . . . ,yr−1) or
h′(x0, . . . ,xr−1) , h′(y0, . . . ,yr−1)

and zh′(x0, . . . ,xr−1)div2w = zh′(y0, . . . ,yr−1)div2w

≤ 1/2w + 2/2w = 3/2w .

5.3.3 Hash Codes for Arrays and Strings

The method from the previous section works well for objects that have a
fixed, constant, number of components. However, it breaks down when
we want to use it with objects that have a variable number of components,
since it requires a random w-bit integer zi for each component. We could
use a pseudorandom sequence to generate as many zi ’s as we need, but
then the zi ’s are not mutually independent, and it becomes difficult to

125

§5.3 Hash Tables

prove that the pseudorandom numbers don’t interact badly with the hash
function we are using. In particular, the values of t and zi in the proof of
Theorem 5.3 are no longer independent.

A more rigorous approach is to base our hash codes on polynomials
over prime fields; these are just regular polynomials that are evaluated
modulo some prime number, p. This method is based on the following
theorem, which says that polynomials over prime fields behave pretty-
much like usual polynomials:

Theorem 5.4. Let p be a prime number, and let f (z) = x0z
0 + x1z

1 + · · · +
xr−1z

r−1 be a non-trivial polynomial with coefficients xi ∈ {0, . . . ,p− 1}. Then
the equation f (z) mod p = 0 has at most r − 1 solutions for z ∈ {0, . . . ,p − 1}.

To use Theorem 5.4, we hash a sequence of integers x0, . . . ,xr−1 with
each xi ∈ {0, . . . ,p − 2} using a random integer z ∈ {0, . . . ,p − 1} via the for-
mula

h(x0, . . . ,xr−1) =
(
x0z

0 + · · ·+ xr−1z
r−1 + (p− 1)zr

)
mod p .

Note the extra (p−1)zr term at the end of the formula. It helps to think
of (p − 1) as the last element, xr , in the sequence x0, . . . ,xr . Note that this
element differs from every other element in the sequence (each of which
is in the set {0, . . . ,p − 2}). We can think of p − 1 as an end-of-sequence
marker.

The following theorem, which considers the case of two sequences of
the same length, shows that this hash function gives a good return for the
small amount of randomization needed to choose z:

Theorem 5.5. Let p > 2w + 1 be a prime, let x0, . . . ,xr−1 and y0, . . . ,yr−1 each
be sequences of w-bit integers in {0, . . . ,2w − 1}, and assume xi , yi for at least
one index i ∈ {0, . . . , r − 1}. Then

Pr{h(x0, . . . ,xr−1) = h(y0, . . . ,yr−1)} ≤ (r − 1)/p} .
Proof. The equation h(x0, . . . ,xr−1) = h(y0, . . . ,yr−1) can be rewritten as

(
(x0 − y0)z0 + · · ·+ (xr−1 − yr−1)zr−1

)
mod p = 0. (5.6)

Since xi , yi, this polynomial is non-trivial. Therefore, by Theorem 5.4,
it has at most r −1 solutions in z. The probability that we pick z to be one
of these solutions is therefore at most (r − 1)/p.

126

Hash Codes §5.3

Note that this hash function also deals with the case in which two
sequences have different lengths, even when one of the sequences is a
prefix of the other. This is because this function effectively hashes the
infinite sequence

x0, . . . ,xr−1,p− 1,0,0,

This guarantees that if we have two sequences of length r and r ′ with
r > r ′ , then these two sequences differ at index i = r. In this case, (5.6)
becomes

i=r ′−1∑

i=0

(xi − yi)zi + (xr ′ − p+ 1)zr
′
+
i=r−1∑

i=r ′+1

xiz
i + (p− 1)zr

 mod p = 0 ,

which, by Theorem 5.4, has at most r solutions in z. This combined with
Theorem 5.5 suffice to prove the following more general theorem:

Theorem 5.6. Let p > 2w + 1 be a prime, let x0, . . . ,xr−1 and y0, . . . ,yr ′−1 be
distinct sequences of w-bit integers in {0, . . . ,2w − 1}. Then

Pr{h(x0, . . . ,xr−1) = h(y0, . . . ,yr−1)} ≤max{r, r ′}/p .

The following example code shows how this hash function is applied
to an object that contains an array, x, of values:

GeomVector
int hashCode() {

long p = (1L<<32)-5; // prime: 2ˆ32 - 5
long z = 0x64b6055aL; // 32 bits from random.org
int z2 = 0x5067d19d; // random odd 32 bit number
long s = 0;
long zi = 1;
for (int i = 0; i < x.length; i++) {

// reduce to 31 bits
long xi = (x[i].hashCode() * z2) >>> 1;
s = (s + zi * xi) % p;
zi = (zi * z) % p;

}
s = (s + zi * (p-1)) % p;
return (int)s;

}

127

§5.4 Hash Tables

The preceding code sacrifices some collision probability for imple-
mentation convenience. In particular, it applies the multiplicative hash
function from Section 5.1.1, with d = 31 to reduce x[i].hashCode() to a 31-
bit value. This is so that the additions and multiplications that are done
modulo the prime p = 232 − 5 can be carried out using unsigned 63-bit
arithmetic. Thus the probability of two different sequences, the longer of
which has length r, having the same hash code is at most

2/231 + r/(232 − 5)

rather than the r/(232 − 5) specified in Theorem 5.6.

5.4 Discussion and Exercises

Hash tables and hash codes represent an enormous and active field of re-
search that is just touched upon in this chapter. The online Bibliography
on Hashing [10] contains nearly 2000 entries.

A variety of different hash table implementations exist. The one de-
scribed in Section 5.1 is known as hashing with chaining (each array entry
contains a chain (List) of elements). Hashing with chaining dates back to
an internal IBM memorandum authored by H. P. Luhn and dated January
1953. This memorandum also seems to be one of the earliest references
to linked lists.

An alternative to hashing with chaining is that used by open address-
ing schemes, where all data is stored directly in an array. These schemes
include the LinearHashTable structure of Section 5.2. This idea was also
proposed, independently, by a group at IBM in the 1950s. Open address-
ing schemes must deal with the problem of collision resolution: the case
where two values hash to the same array location. Different strategies
exist for collision resolution; these provide different performance guar-
antees and often require more sophisticated hash functions than the ones
described here.

Yet another category of hash table implementations are the so-called
perfect hashing methods. These are methods in which find(x) operations
take O(1) time in the worst-case. For static data sets, this can be accom-
plished by finding perfect hash functions for the data; these are functions

128

Discussion and Exercises §5.4

that map each piece of data to a unique array location. For data that
changes over time, perfect hashing methods include FKS two-level hash
tables [31, 24] and cuckoo hashing [57].

The hash functions presented in this chapter are probably among the
most practical methods currently known that can be proven to work well
for any set of data. Other provably good methods date back to the pio-
neering work of Carter and Wegman who introduced the notion of uni-
versal hashing and described several hash functions for different scenarios
[14]. Tabulation hashing, described in Section 5.2.3, is due to Carter and
Wegman [14], but its analysis, when applied to linear probing (and sev-
eral other hash table schemes) is due to Pǎtraşcu and Thorup [60].

The idea of multiplicative hashing is very old and seems to be part of
the hashing folklore [48, Section 6.4]. However, the idea of choosing the
multiplier z to be a random odd number, and the analysis in Section 5.1.1
is due to Dietzfelbinger et al. [23]. This version of multiplicative hashing
is one of the simplest, but its collision probability of 2/2d is a factor of two
larger than what one could expect with a random function from 2w→ 2d.
The multiply-add hashing method uses the function

h(x) = ((zx+ b) mod 22w)div22w−d

where z and b are each randomly chosen from {0, . . . ,22w−1}. Multiply-add
hashing has a collision probability of only 1/2d [21], but requires 2w-bit
precision arithmetic.

There are a number of methods of obtaining hash codes from fixed-
length sequences of w-bit integers. One particularly fast method [11] is
the function

h(x0, . . . ,xr−1)
=

(∑r/2−1
i=0 ((x2i + a2i) mod 2w)((x2i+1 + a2i+1) mod 2w)

)
mod 22w

where r is even and a0, . . . ,ar−1 are randomly chosen from {0, . . . ,2w}. This
yields a 2w-bit hash code that has collision probability 1/2w. This can be
reduced to a w-bit hash code using multiplicative (or multiply-add) hash-
ing. This method is fast because it requires only r/2 2w-bit multiplications
whereas the method described in Section 5.3.2 requires r multiplications.
(The mod operations occur implicitly by using w and 2w-bit arithmetic
for the additions and multiplications, respectively.)

129

§5.4 Hash Tables

The method from Section 5.3.3 of using polynomials over prime fields
to hash variable-length arrays and strings is due to Dietzfelbinger et al.
[22]. Due to its use of the mod operator which relies on a costly ma-
chine instruction, it is, unfortunately, not very fast. Some variants of this
method choose the prime p to be one of the form 2w − 1, in which case
the mod operator can be replaced with addition (+) and bitwise-and (&)
operations [47, Section 3.6]. Another option is to apply one of the fast
methods for fixed-length strings to blocks of length c for some constant
c > 1 and then apply the prime field method to the resulting sequence of
dr/ce hash codes.

Exercise 5.1. A certain university assigns each of its students student
numbers the first time they register for any course. These numbers are
sequential integers that started at 0 many years ago and are now in the
millions. Suppose we have a class of one hundred first year students and
we want to assign them hash codes based on their student numbers. Does
it make more sense to use the first two digits or the last two digits of their
student number? Justify your answer.

Exercise 5.2. Consider the hashing scheme in Section 5.1.1, and suppose
n = 2d and d ≤ w/2.

1. Show that, for any choice of the muliplier, z, there exists n values
that all have the same hash code. (Hint: This is easy, and doesn’t
require any number theory.)

2. Given the multiplier, z, describe n values that all have the same
hash code. (Hint: This is harder, and requires some basic number
theory.)

Exercise 5.3. Prove that the bound 2/2d in Lemma 5.1 is the best possi-
ble bound by showing that, if x = 2w−d−2 and y = 3x, then Pr{hash(x) =
hash(y)} = 2/2d. (Hint look at the binary representations of zx and z3x
and use the fact that z3x = zx+2zx.)

Exercise 5.4. Reprove Lemma 5.4 using the full version of Stirling’s Ap-
proximation given in Section 1.3.2.

Exercise 5.5. Consider the following simplified version of the code for
adding an element x to a LinearHashTable, which simply stores x in the

130

Discussion and Exercises §5.4

first null array entry it finds. Explain why this could be very slow by
giving an example of a sequence of O(n) add(x), remove(x), and find(x)
operations that would take on the order of n2 time to execute.

LinearHashTable
boolean addSlow(T x) {

if (2*(q+1) > t.length) resize(); // max 50% occupancy
int i = hash(x);
while (t[i] != null) {

if (t[i] != del && x.equals(t[i])) return false;
i = (i == t.length-1) ? 0 : i + 1; // increment i

}
t[i] = x;
n++; q++;
return true;

}

Exercise 5.6. Early versions of the Java hashCode() method for the String
class worked by not using all of the characters found in long strings. For
example, for a sixteen character string, the hash code was computed using
only the eight even-indexed characters. Explain why this was a very bad
idea by giving an example of large set of strings that all have the same
hash code.

Exercise 5.7. Suppose you have an object made up of two w-bit integers,
x and y. Show why x⊕ y does not make a good hash code for your object.
Give an example of a large set of objects that would all have hash code 0.

Exercise 5.8. Suppose you have an object made up of two w-bit integers,
x and y. Show why x+ y does not make a good hash code for your object.
Give an example of a large set of objects that would all have the same
hash code.

Exercise 5.9. Suppose you have an object made up of two w-bit integers,
x and y. Suppose that the hash code for your object is defined by some
deterministic function h(x,y) that produces a single w-bit integer. Prove
that there exists a large set of objects that have the same hash code.

Exercise 5.10. Let p = 2w −1 for some positive integer w. Explain why, for

131

§5.4 Hash Tables

a positive integer x

(x mod 2w) + (xdiv2w) ≡ x mod (2w − 1) .

(This gives an algorithm for computing x mod (2w − 1) by repeatedly set-
ting

x = x&((1<<w)− 1) + x>>>w

until x ≤ 2w − 1.)

Exercise 5.11. Find some commonly used hash table implementation
such as the (Java Collection Framework HashMap or the HashTable or
LinearHashTable implementations in this book, and design a program
that stores integers in this data structure so that there are integers, x,
such that find(x) takes linear time. That is, find a set of n integers for
which there are cn elements that hash to the same table location.

Depending on how good the implementation is, you may be able to
do this just by inspecting the code for the implementation, or you may
have to write some code that does trial insertions and searches, timing
how long it takes to add and find particular values. (This can be, and has
been, used to launch denial of service attacks on web servers [17].)

132

